LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Com. DEGREE EXAMINATION - COMMERCE

THIRD SEMESTER - APRIL 2010
ST 3104 / 3101-BUSINESS STATISTICS
Date \& Time: 28/04/2010 / 1:00-4:00
Dept. No. \square Max. : 100 Marks

SECTION A

Answer ALL questions.

($10 \times 2=20$ marks)

1. What is a statistical survey?
2. Distinguish between primary and secondary data.
3. What are the advantages of diagrammatic presentation of data?
4. Calculate the harmonic mean of the following values: $1,0.5,10,45,175,0.01$, 4, 11.2.
5. Find the weighted arithmetic mean of the first 5 natural numbers taking the respective numbers as the weights.
6. What is skewness?
7. What is the use of a scatter diagram?
8. Given the 2 regression equations, $4 \mathrm{X}-5 \mathrm{Y}+33=0,20 \mathrm{X}-9 \mathrm{Y}-107=0$, find the mean values of X and Y .
9. What are the components of time series?
10. Define generalized linear programming problem.

SECTION B

Answer any FIVE questions.

11. Discuss the importance of statistics in various fields.
12. Construct a histogram for the following data:

Variable	$\mathbf{1 0 - 2 0}$	$\mathbf{2 0 - 3 0}$	$\mathbf{3 0 - 4 0}$	$\mathbf{4 0 - 5 0}$	$\mathbf{5 0 - 6 0}$	$\mathbf{6 0 - 7 0}$	$\mathbf{7 0 - 8 0}$
Frequency	12	30	45	65	70	25	18

13. Calculate median and mode for the following series:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
No. of Students	15	25	52	56	78	80	70

14. The numbers of telephone calls received at an exchange in 245 successive one-minute intervals are shown in the following frequency distribution. Compute the mean deviation about the median.

No. of calls	0	1	2	3	4	5	6	7
Frequency	14	21	25	43	51	40	39	12

15. Find Karl Pearson's coefficient of skewness for the following data:

Value	6	12	18	24	30	36	42
Frequency	4	7	9	18	15	10	5

16. Calculate Karl Pearson's coefficient of correlation for the following data:

\mathbf{X}	6	8	12	15	18	20	24	28	31
\mathbf{Y}	10	12	15	15	18	25	22	26	28

17. Calculate Laspeyre's and Fisher's index numbers from the following data.

Commodity	Price (2008)	Quantity (2008)	Price (2009)	Quantity (2009)
Bricks	20	8	40	6
Sand	50	10	60	5
Timber	40	15	50	15
Cement	20	209	20	25

18. An engineering workshop has 5 operators $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E , assignable to any one of the 5 machines $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$ and M_{5}. The possible weekly outputs are displayed in the matrix given below. Find the best way to assign the operators to the machines to maximize the output.

	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$	$\mathbf{M}_{\mathbf{5}}$
\mathbf{A}	18	20	25	30	34
\mathbf{B}	17	21	27	32	38
\mathbf{C}	21	26	33	37	32
\mathbf{D}	19	22	29	35	40
\mathbf{E}	22	26	29	34	39

SECTION C

Answer any TWO questions.

19. Following are the marks obtained by 2 students A and B in 10 tests:

Tests	1	2	3	4	5	6	7	8	9	10
Marks(A)	44	80	76	48	52	72	68	56	60	54
Marks(B)	48	75	54	60	63	69	72	51	57	66

If the consistency of performance is the criterion for awarding a prize, which student should get the prize?
20. Calculate the first 4 moments and values of β_{1} and β_{2} for the following frequency distribution.

Value	2	3	4	5	6
Frequency	1	3	7	3	1

21. Given the bivariate data:

\mathbf{X}	1	5	3	2	1	1	7	3
\mathbf{Y}	6	1	0	0	1	2	1	5

(i) Fit a regression line of Y on X and hence predict Y if $\mathrm{X}=5$.
(ii) Fit a regression line of X on Y and hence predict X if $\mathrm{Y}=2.5$.
(iii) Calculate correlation coefficient.
22. There are three sources $\left(\mathrm{S}_{\mathrm{i}}\right)$ or origins which store a given product. These sources supply these products to four dealers $\left(\mathrm{D}_{\mathrm{j}}\right)$. The cost (in Rs.) of transporting the products from various sources to various dealers, the capacities of the sources and the demands of the dealers are given below.

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	Supply
$\mathbf{S}_{\mathbf{1}}$	11	23	17	14	$\mathbf{2 5 0}$
$\mathbf{S}_{\mathbf{2}}$	16	18	14	10	$\mathbf{3 0 0}$
$\mathbf{S}_{\mathbf{3}}$	21	24	13	10	$\mathbf{4 0 0}$
Demand	$\mathbf{2 0 0}$	$\mathbf{2 2 5}$	$\mathbf{2 7 5}$	$\mathbf{2 5 0}$	

Find out the solution for transporting the products at a minimum cost by using
(i) North-West Corner Rule, (ii) Least Cost method and (iii) Vogel's Approximation Method. Compare the costs and write down the best solution.

