LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Com. DEGREE EXAMINATION - COMMERCE

THIRD SEMESTER – APRIL 2010

ST 3104 / 3101 - BUSINESS STATISTICS

SECTION A

Date & Time: 28/04/2010 / 1:00 - 4:00 Dept. No.

Answer ALL questions.

- 1. What is a statistical survey?
- 2. Distinguish between primary and secondary data.
- What are the advantages of diagrammatic presentation of data? 3.
- 4. Calculate the harmonic mean of the following values: 1, 0.5, 10, 45, 175, 0.01, 4, 11.2.
- 5. Find the weighted arithmetic mean of the first 5 natural numbers taking the respective numbers as the weights.
- What is skewness? 6.
- What is the use of a scatter diagram? 7.
- Given the 2 regression equations, 4X-5Y+33=0, 20X-9Y-107=0, find the mean values of X 8. and Y.
- 9. What are the components of time series?
- Define generalized linear programming problem. 10.

SECTION B

Answer any FIVE questions.

- 11. Discuss the importance of statistics in various fields.
- 12. Construct a histogram for the following data:

Variable	10-20	20-30	30-40	40-50	50-60	60-70	70-80	
Frequency	12	30	45	65	70	25	18	

13. Calculate median and mode for the following series:

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70
No. of Students	15	25	52	56	78	80	70

14. The numbers of telephone calls received at an exchange in 245 successive one-minute intervals are shown in the following frequency distribution. Compute the mean deviation about the median.

No. of calls	0	1	2	3	4	5	6	7
Frequency	14	21	25	43	51	40	39	12

- 15. Find Karl Pearson's coefficient of skewness for the following data: 6 12 18 24 30 36 42 Value
 - **Frequency** 4 7 9 18 15 10 5
- 16. Calculate Karl Pearson's coefficient of correlation for the following data:

		8							
Y	10	12	15	15	18	25	22	26	28

17. Calculate Laspeyre's and Fisher's index numbers from the following data.

Commodity	Price (2008)	Quantity (2008)	Price (2009)	Quantity (2009)
Bricks	20	8	40	6
Sand	50	10	60	5
Timber	40	15	50	15
Cement	20	209	20	25

(10 x 2 = 20 marks)

(5 x 8 =40 marks)

Max.: 100 Marks

18. An engineering workshop has 5 operators A, B, C, D and E, assignable to any one of the 5 machines M_1 , M_2 , M_3 , M_4 and M_5 . The possible weekly outputs are displayed in the matrix given below. Find the best way to assign the operators to the machines to maximize the output.

na the best way to assign the of								
	M_1	M_2	M_3	M_4	M_5			
Α	18	20	25	30	34			
В	17	21	27	32	38			
С	21	26	33	37	32			
D	19	22	29	35	40			
Е	22	26	29	34	39			

SECTION C

 $(2 \times 20 = 40 \text{ marks})$

19. Following are the marks obtained by 2 students A and B in 10 tests:

Tests	1	2	3	4	5	6	7	8	9	10
Marks(A)	44	80	76	48	52	72	68	56	60	54
Marks(B)	48	75	54	60	63	69	72	51	57	66

If the consistency of performance is the criterion for awarding a prize, which student should get the prize?

20. Calculate the first 4 moments and values of β_1 and β_2 for the following frequency distribution.

value	2	3	4	3	0	
Frequency	1	3	7	3	1	

21. Given the bivariate data:

Answer any TWO questions.

Χ	1	5	3	2	1	1	7	3
Y	6	1	0	0	1	2	1	5

- (i) Fit a regression line of Y on X and hence predict Y if X=5.
- (ii) Fit a regression line of X on Y and hence predict X if Y=2.5.

(iii) Calculate correlation coefficient.

22. There are three sources (S_i) or origins which store a given product. These sources supply these products to four dealers (D_j) . The cost (in Rs.) of transporting the products from various sources to various dealers, the capacities of the sources and the demands of the dealers are given below.

	D ₁	D ₂	D ₃	D ₄	Supply
\mathbf{S}_1	11	23	17	14	250
S_2	16	18	14	10	300
S ₃	21	24	13	10	400
Demand	200	225	275	250	

Find out the solution for transporting the products at a minimum cost by using

(i) North-West Corner Rule, (ii) Least Cost method and (iii) Vogel's Approximation Method. Compare the costs and write down the best solution.
